CONSTANT TEMPERATURE FRONTS IN
COMPOSITE BODIES
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The singularities of the advancement of isotherms in composite bodies are considered, and
their application in thermophysical practice is shown,

Composite bodies are used extensively in engineering and in thermophysical practice. In the last
case they are used to determine the heat conductivity A by the method of regular mode bicalorimeters
{plane, cylindrical, ball) and also in instruments for the dynamical determination of the thermophysical
properties of bodies [1,2]. Usually the A built up on the shell case or the A and « of the core are hence
investigated.

The mentioned methods of determining ~ and « are based theoretically on a whole series of assump-
tions, and factors distorting the result sometimes arise in their practical utilization, among which is, for
example, the looseness of the shell fit on the core. This forces the researcher to introduce intermediate
media (grease) and to take account of their effect,

This paper is aimed at establishing the regularity of constant temperature-front advancement @
= idem in composite bodies and at showing the possibility of their utilization.

To do this, let us first turn to an analysis of the Lykov solution [3] about the symmetry temperature
field of a three~composite plate (a plane bicalorimeter), which is described by the dependence
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for a core (enclosed body) under boundary conditions of the I or IIT kind in the regular stage.
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Taking the logarithm and differentiating (1) with respect to 7 for ® = idem in sequence yields a for-
mula to compute the displacement velocity of the constant temperature front [4],
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Analysis of (2) shows that the displacement velocity of the isotherm ® = idem in composite bodies
depends on both their geometry (¢4, I,) and on the thermophysical properties of the core and shell in the
general case., For fixed body geometries and properties the velocity vg in the steady thermal kinetics
stage is determined just by the coordinate x of the point under consideration and by the boundary conditions.

If a characteristic equation for 0 = yy = 7/2, in the form
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is added to the dependence (2}, then the combined solution of the system (2)-(3) for known li, lz’ Uy, C,
Cy, P1, Do, Bi,andthe calculated vy permits determination of the temperature conductivity of the shell @90

Let us note that the velocity vg is calculated by differentiation of the behavior of the experimental
curve T = idem at the point x of the core in the coordinates ({; — x} — 7, and the fact of regularization of
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the thermal mode is established by the equidistance of the path of the line sections for different T = idem
(® = idem) in the coordinates mentioned [4].

1t is easy to show that the system of equations needed to compute 4, in the case of a cylindrical bi-
calorimeter by acting analogously to the above and by using the solution in [3], is
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0< 1y < 2.4048.

For a ball bicalorimeter, the known solutions [3] are presented just for Bi = <, Then considering Kld/z
[(Ry/Ry) — 1] irrational, we have
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The selection of the quantity gy in (2)-(7) is subject to the condition vg < = for x/{; > 0 and r/R; > 0
[4].

As is seen from (2)-(7), the determination of the quantity «, is not associated with any constraints
on the core — shell pair and has a rigorous foundation.

Now, let us turn to an analysis of the regularities of advancement of the fronts & = idem in the par-
ticular case when the core is surrounded by either a sufficiently thick shell with arbitrary properties, or
by a shell whose temperature conductivity is known to be below the temperature conductivity of the core.
For brevity, let us call such a nucleus heat-insulated.

Then if the term p,K73/2(x/1,) becomes a small quantity (it is sufficient that wK 3/ %(x/1,) = 0.42),
then (2) for the core of a plane bicalorimeter can be reduced to
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There is no yy in (2')and this indicates that the velocity vg is now independent of either the shell
properties or the thermal circumstances at the bicalorimeter boundary, i.e., onthe quantity Bi. The
latter substantially simplifies an experiment to determine the temperature conductivity «4 of the core,
whose magnitude it is not difficult to establish on the basis of (2') for a velocity vg first calculated at the
point x on the T = idem isotherm in the regularized kinetics domain. It is also clear that the need to per-
fect the thermal contact between the core and the shell drops out here,

Starting from the fact that the Bessel function of the first kind for p;{r/Ry) << 1 (the case of a heat-
insulated cylindrical core) and v = 0 can be represented as
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we obtain the following relationship:
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In a heat-insulated ball core we have
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According to our proofs [4], formulas (2'), (4'), (6') describe the rate of displacement of the iso-
therm ® = idem in the quasistationary mode for the corresponding noncomposite bodies. Hence, the
boundary conditions of the I and IIT kind can be replaced in experimental practice by boundary conditions
of the II kind by the method described here and by maintenance of the contant heat flux density q = const,
which is not subject to measurement, in the outer surface of the heat-insulated experimental bodies.

In the regular thermal mode, when the time change in the temperature of the core is described by a
simple exponential, taking account of the dependences (2'), ¢'), (6') results in the deduction about the
elliptical nature of the temperature distribution over the coordinate which holds for fixed t in the core of

a plane bicalorimeter of the form ’
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and for cylindrical and ball cores, respectively,
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The latter should be taken into account in constructing the coordinate functions in approximate meth-
ods of solving the corresponding heat-conduction problems and computations, since the elliptic tempera-
ture distribution may include the whole core. This holds for uiK:;'lz(li/ ) = 0.42 in a plane bicalorimeter,
Analogous estimates can be made for other bodies also.

NOTATION
9, T, 7), Ty Tg are the dimensionless and dimensional running temperature of the core, its
initial temperature, and temperature of the surrounding medium;
iy, 19y Ry, Ry, x(r) are the half-thickness of the plate-core and shell thickness, core radius and

outer radius of a cylindrical (ball) bicalorimeter, running point of the core;
T is the time;

@y, Cy, Dy, @y, Co, Dy are the temperature conduction, specific heat,and density of the core and shell;
N is the first root of the characteristic equations;

Ve is the velocity of the isotherm;

Ka is the criterion of the inertial properties of the core and shell;

Bi is the Biot number.
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